AI導入を成功に導くための準備–押さえるべき3つの重要な視点

今回は「AI導入を成功に導くための準備–押さえるべき3つの重要な視点」についてご紹介します。

関連ワード (データマネジメント等) についても参考にしながら、ぜひ本記事について議論していってくださいね。

本記事は、ZDNet Japan様で掲載されている内容を参考にしておりますので、より詳しく内容を知りたい方は、ページ下の元記事リンクより参照ください。


 現代の競争の激しいビジネス環境において、企業には迅速性、正確性、そして革新性が求められ、それらは全て質の高いデータ駆動型の意思決定を必要とします。データを最大限に活用せず、やみくもに試行錯誤を繰り返すリスクは、もはや企業が追えるものではありません。

 生成AIの最近の進歩により、私たちとデータとの関わり方が変化し、AIとデータ管理の融合により、多くの可能性が開かれました。データを有用な洞察に変換することが、かつてないほど容易になっています。Informaticaの調査によれば、45%の最高データ責任者(CDO)が既に生成AIを導入しており、54%が導入を計画しています。しかし、データリーダーが生成AIの活用を進める中、果たして彼らの企業データは真にAIに対応できているのでしょうか。これは、顧客とのやりとりの中でよく議論される問題の一つです。

 企業データは本質的に複雑かつ断片化されており、ハイブリッド、マルチクラウド、マルチベンダー環境に存在することが多く、生成AIの実装に課題をもたらします。効果的なデータ管理が欠如していると、企業は「データによる死」とも言える企業のまひ状態に陥る危険性があります。

 企業全体でデータの品質とガバナンスを確保することは容易ではありません。しかし、信頼できる完全なデータがなければ、生成AIは単なる見せかけに過ぎません。生成AIが実用的な価値を提供するには、不正確、不完全、無関係なデータを特定し、修正することが不可欠です。私たちはこれが容易ではないことを理解しています。だからこそ、私たちは顧客に「AIのためのデータ管理」ではなく「データ管理のためのAI」が必要であると伝えています。

 AI駆動型のデータ管理システムは、手動の監視やルールベースのフレームワークを超えて進化しています。機械学習を活用することで、AIはデータの異常を検出し、自律的にコンプライアンスを強化します。さらに、データを文脈化し、特定のコンテキストに応じたデータインテリジェンスを提供する能力も備えています。

 例えば、ビジネスの文脈やユーザーの役割を理解するAI駆動型データ管理ツールを使用することで、AI出力の品質を大幅に向上させることができます。状況の細かなニュアンスを考慮することで、企業はAI出力の関連性を高め、自社固有のニーズに沿ったより適切な意思決定を行うことができます。

 自然言語インターフェースを持つ生成AIは、データエンジニア、ビジネスアナリスト、営業・マーケティングチーム、および運用チーム間のコミュニケーションと知識共有を促進するデータ翻訳者の役割を果たします。データ専門家を超えて、部門横断的なチームに力を与える生成AIの変革力を活用することが、AIの成功の鍵となります。

 生成AIにより、より多様なステークホルダー(利害関係者)がデータ管理に参加できるようになり、「ヒューマンインザループ」(人間参加型AI)が拡大します。これは、データ品質の確保に不可欠です。なぜなら、データ専門家は全ての領域に精通しているわけではないからです。異なる部門からのデータとフィードバックを取り入れることで、企業はデータの正確性と完全性を向上させ、バイアスを排除することができます。

 バイアスとハルシネーションは生成AIの真の懸念事項です。Informaticaの調査によると、データリーダーの約40%が生成AIに適したデータを提供することをデータ戦略の優先事項として挙げています。AIの採用は最初のステップに過ぎず、これらの問題を軽減するためには、継続的な改良と人間のフィードバックの統合をAIライフサイクルに組み込む必要があります。

 AIソリューションのエコシステムは急速に進化しており、各ソリューションにはそれぞれ独自の強みと特徴があります。このエコシステムを効果的に活用することで、企業は柔軟性とスケーラビリティーを獲得し、生成AIプロジェクトを加速させることができます。重要なのは、高品質で信頼性が高く、適切なガバナンスの下にあるデータを生成AIイニシアチブに提供することです。

 そのためには、効率的なデータパイプラインの作成と管理が不可欠です。さらに、エンタープライズグレードの生成AIを実現するには、主要なクラウドプロバイダーやデータプラットフォームとの連携が重要です。これらのパートナーシップを通じて、企業は最新のデータアーキテクチャーを採用し、AIの能力を最大限に引き出すことができます。

 業界をリードする企業間の協力により、エンタープライズグレードの生成AIのためのリファレンスアーキテクチャー(ソリューション設計図)の開発も進んでいます。これらの設計図は、企業が生成AIを効果的に導入し、活用する上で重要な指針となるでしょう。

 生成AIとAI駆動のデータ管理ソリューションは、医療、金融、製造、小売などの分野でデータ駆動型イノベーションのパラダイムシフトを促進しています。問題は、あなたの組織が、これらの変革的なツールを最大限に活用する準備ができているかどうかです。上記の考慮事項は、組織のAI対応を確保するための重要な鍵となります。

COMMENTS


Recommended

TITLE
CATEGORY
DATE
米司法省、北朝鮮のハッカーを起訴–ソニーのサイバー攻撃や「WannaCry」に関与
IT関連
2021-02-18 16:15
日立製作所、介護予防を支援する新事業–高齢者の「社会参加」を促進
IT関連
2022-02-19 09:48
「ChatGPT」、「Windows」版アプリが無料ユーザーも利用可能に
IT関連
2024-11-20 00:30
お古のGalaxyスマホを「赤ちゃんモニター」などに再利用 サムスンの環境保護プログラム
企業・業界動向
2021-01-17 01:16
エクサウィザーズ、第一三共にデータ統合活用プラットフォームを提供
IT関連
2023-02-01 23:29
サテライトオフィス、コロナ禍で急成長 都も後押し
IT関連
2021-01-29 06:42
ソニー初、LDAC対応の完全ワイヤレスイヤフォン発売 イヤーチップはフォームタイプに
くらテク
2021-06-10 18:47
地球温暖化で懸念されるインターネット障害の増加–大手IT企業の対策は?
IT関連
2023-03-18 16:04
インボイス制度を機に進める経理部門の「攻め」のデジタル化(後編)
IT関連
2023-02-04 21:12
セキュリティを軸に社会全体の安全なDXに貢献–アシュアード・大森社長
IT関連
2024-01-06 04:35
「EOS R3」は手ブレ補正8段、RAW撮影でも毎秒約30コマに キヤノンが追加情報
くらテク
2021-06-03 18:47
パラマウントベッド、グループ国内拠点の基幹システムを「Dynamics 365」で刷新
IT関連
2024-10-03 01:09
埼玉県教委が中学校へのスマホ持ち込み緩和 懸念は? メリットは?
IT関連
2021-01-29 22:39
NEC、ServiceNow Japanと戦略的協業を加速–自社と顧客のDXを推進
IT関連
2022-11-04 07:04