GitHub、ファインチューニングモデルを「Copilot Enterprise」で提供–コード提案をカスタマイズ可能に

今回は「GitHub、ファインチューニングモデルを「Copilot Enterprise」で提供–コード提案をカスタマイズ可能に」についてご紹介します。

関連ワード (ソフトウェア等) についても参考にしながら、ぜひ本記事について議論していってくださいね。

本記事は、ZDNet Japan様で掲載されている内容を参考にしておりますので、より詳しく内容を知りたい方は、ページ下の元記事リンクより参照ください。


 GitHubは米国時間9月10日、ファインチューニングモデルを「GitHub Copilot Enterprise」ユーザー向けに限定パブリックベータ版を提供した。同モデルを使用することで、AIプログラミングツール「GitHub Copilot」をユーザー独自のコードベースやコーディング慣習でカスタマイズし、特定のニーズに合わせて関連性、品質、一貫性のあるコード補完支援の向上を提供可能にする。

 内部API、特殊なフレームワーク、独自の言語、厳格なコーディングスタイルを使用している組織は、ファインチューニングモデルの恩恵を受けることができるとGitHubは語る。例えば、「COBOL」のようなレガシー言語を使用している金融機関は、ファインチューニングモデルを使って特有のコーディング要件に対応できる。テクノロジーまたはヘルスケア分野では、クラウドリソースが組織の方針に従ってデプロイされているかといったコンプライアンスとセキュリティ基準を順守するため、社内ライブラリーに依存することが多くあるが、コーディングの正確性・効率性を大幅に改善できるという。

 また、開発者は、調整の必要が少ないコードを受け取ることができるため、新しいチームメンバーのオンボーディングを迅速化でき、ベテラン開発者も修正ではなく開発により集中できるようになる。より関連性が高く、高品質で一貫性のあるコーディング支援を提供することは、GitHub Copilotを組織にとってさらに役立つツールとするための大きな前進とGitHubはアピールする。

 同社では、GitHub Copilotをカスタマイズするための取り組みを続けており、GitHub Copilot Enterpriseでは、リポジトリーインデックスとナレッジベースがまず導入されている。ともに検索拡張生成(RAG)を活用するが、RAGは、チャット体験を最新の出力で改善するのには有効な一方で、リアルタイムでのコード補完で求められるパフォーマンスを満たさないという。今回、ファインチューニングでコード補完体験にカスタマイゼーションが導入されたことで、GitHub Copilotがコンテキストに応じた提案をインラインコーディングで必要な速度で提供できるようになったとGitHubは強調する。

 各モデルのカスタマイズには、低ランク近似(Low-Rank Approximation:LoRA)手法が使われる。最も重要なモデルのパラメーターの小さなサブセットを教師あり学習フェーズでファインチューニングすることで、モデルの管理性と効率性を高める。これは、従来のファインチューニング技術に比べてより高速かつ安価な学習方法でもあるという。さらに、ファインチューニングのプロセスは、GitHub Copilotからの提案がどのように対処されているかに関するインサイトも取り入れているため、組織が持つ特定のニーズにモデルがより密接に適合していることを確かにする。

 チューニングプロセスには「Azure OpenAI Service」が利用され、学習パイプライン全体でスケーラビリティーとセキュリティを提供する。

 プライバシーとセキュリティについて、ユーザーのデータはユーザーのものであり、ほかの顧客のモデルを学習させるために使われることはないと同社は述べる。ユーザーのカスタムモデルは非公開のままで、完全に制御できるという。

 学習プロセスを開始すると、レポジトリーデータとテレメトリーデータはトークン化され、一時的にAzureの学習パイプラインにコピーされる。このデータの一部は学習に使われるが、残りは検証と品質評価用に確保される。ファインチューニングプロセスが完了すると、モデルには一連の品質評価が実施され、基本モデルを上回っているかが確認される。これには検証用データに対するテストが含まれ、新しいモデルが、ユーザーのレポジトリー固有なコード提案を改善しているかが確認される。

 モデルは、品質チェックに合格すると、Azure OpenAI Serviceに展開される。このステップは、複数のLoRAモデルを大規模にホストすることを可能にする一方で、それらをネットワークで分離することを可能にする。プロセスの完了後、一時的な学習データは全て削除され、データフローは通常の推論チャネル経由で再開される。GitHub Copilotのプロキシーサービスにより、適切なカスタムモデルがコード補完で使われるようになる。

 ファインチューニングモデルは現在、限定パブリックベータ版として公開されており、ウィッシュリストから利用を申し込める。

COMMENTS


Recommended

TITLE
CATEGORY
DATE
IDC Japan、国内第3のプラットフォーム市場予測を発表
IT関連
2024-08-31 21:07
パイプラインへのサイバー攻撃で燃料不足の米国でガソスタアプリ「GasBuddy」が初のApp Store1位に
ソフトウェア
2021-05-14 08:04
AWS、「Amazon EC2 M1 Mac」インスタンスを正式リリース
IT関連
2022-07-14 23:10
レッドハット、2021年の事業戦略はOpenShiftに集中
IT関連
2021-04-14 18:38
スタンドアロンのWebAssemblyランタイム「Wasmer」がRISC-Vに対応。Wasmer 3.2正式リリース
WebAssembly
2023-04-21 17:03
Google「Wear OS」を搭載した初の「G-SHOCK」、5月発売
くらテク
2021-04-02 11:38
NTTドコモら3社、仮想水位計とAIを活用した河川の水位監視ソリューションを提供
IT関連
2023-06-30 13:04
キヤノンITS、教職員・児童/生徒・保護者をつなぐ小中高向けサブスクサービス提供へ
IT関連
2023-07-27 03:04
2日間で1億円──投げ銭“スパチャ”の流行は日本特有? YouTube幹部に直撃インタビュー
イラスト・デザイン
2021-03-19 16:06
IT系上場企業の平均年収を業種別にみてみた 2023年版[後編] ~ パッケージソフトウェア系、SI/システム開発系、クラウド/キャリア系企業
働き方
2023-07-19 04:11
NTTデータ、持株会社体制後の会社名を決定
IT関連
2023-02-24 11:57
TOPPAN、社内システムのプログラム開発に生成AI活用–業務効率が約70%向上
IT関連
2023-11-11 08:38
GWコミケ延期へ 準備会「断腸の思い」
くらテク
2021-03-09 03:28
Oracle Exadataをクラウド上のスケーラブルなソフトウェアとした「Exadata Database Service on Exascale Infrastructure」提供開始
Oracle
2024-07-16 16:07