ロボット、チップ、完全自動運転、イーロン・マスク氏のTesla AI Dayハイライト5選
今回は「ロボット、チップ、完全自動運転、イーロン・マスク氏のTesla AI Dayハイライト5選」についてご紹介します。
関連ワード (命令、地球上、空間等) についても参考にしながら、ぜひ本記事について議論していってくださいね。
本記事は、TechCrunch様で掲載されている内容を参考にしておりますので、より詳しく内容を知りたい方は、ページ下の元記事リンクより参照ください。
Elon Musk(イーロン・マスク)氏はTesla(テスラ)を「単なる電気自動車会社ではない」と見てもらいたいと考えている。米国時間8月19日に開催されたTesla AI Day(テスラ・AI・デー)で、イーロン・マスクCEOはテスラのことを「推論レベルとトレーニングレベルの両方でハードウェアにおける深いAI活動」を行っている企業であると説明した。この活動は、自動運転車への応用の先に待つ、Teslaが開発を進めていると報じられている人型ロボットなどに利用することができる。
Tesla AI Dayは、映画「マトリックス」のサウンドトラックから引き出された45分間にわたるインダストリアルミュージックの後に開始された。そこでは自動運転とその先を目指すことを支援するという明確な目的のもとに集められた、テスラのビジョンとAIチームに参加する最優秀のエンジニアたちが、次々に登場してさまざまなテスラの技術を解説した。
「それを実現するためには膨大な作業が必要で、そのためには才能ある人々に参加してもらい、問題を解決してもらう必要があるのです」とマスク氏はいう。
この日のイベントは「Battery Day」(バッテリー・デー)や「Autonomy Day」(オートノミー・デー)と同様に、テスラのYouTubeチャンネルでライブ配信された。超技術的な専門用語が多かったのだが、ここではその日のハイライト5選をご紹介しよう。
このニュースは、会場からの質問が始まる前にAI Dayの最後の情報として発表されたものだが、最も興味深いものだった。テスラのエンジニアや幹部が、コンピュータービジョンやスーパーコンピュータDojo(ドージョー)、そしてテスラチップについて語った後(いずれも本記事の中で紹介する)、ちょっとした幕間のあと、白いボディスーツに身を包み、光沢のある黒いマスクで顔が覆われた、宇宙人のゴーゴーダンサーのような人物が登場した。そして、これは単なるテスラの余興ではなく、テスラが実際に作っている人型ロボット「Tesla Bot」の紹介だったことがわかった。
画像クレジット:Tesla
テスラがその先進的な技術を自動車以外の用途に使うことを語ろうとするときに、ロボット使用人のことを語るとは思っていなかった。これは決して大げさな表現ではない。CEOのイーロン・マスク氏は、食料品の買い物などの「人間が最もやりたくない仕事」を、Tesla Botのような人型ロボットが代行する世界を目論んでいるのだ。このボットは、身長5フィート8インチ(約173cm)、体重125ポンド(約56.7kg)で、150ポンド(約68kg)の荷物を持ち上げることが可能で、時速5マイル(約8km/h)で歩くことができる。そして頭部には重要な情報を表示するスクリーンが付いている。
「もちろん友好的に、人間のために作られた世界を動き回ることを意図しています」とマスク氏はいう。「ロボットから逃げられるように、そしてほとんどの場合、制圧することもできるように、機械的そして物理的なレベルの設定を行っています」。
たしかに、誰しもマッチョなロボットにやられるのは絶対避けたいはずだ(だよね?)。
2022年にはプロトタイプが完成する予定のこのロボットは、同社のニューラルネットワークや高度なスーパーコンピューターDojoの研究成果を活用する、自動車以外のロボットとしてのユースケースとして提案されている。マスク氏は、Tesla Botが踊ることができるかどうかについては口にしなかった。
関連記事:テスラはロボット「Tesla Bot」を開発中、2022年完成予定
画像クレジット:Tesla
テスラのディレクターであるGanesh Venkataramanan(ガネッシュ・べンカタラマン)氏が、完全に自社で設計・製造されたテスラのコンピュータチップを披露した。このチップは、テスラが自社のスーパーコンピュータ「Dojo」を駆動するために使用している。テスラのAIアーキテクチャの多くはDojoに依存している。Dojoはニューラルネットワークの訓練用コンピューターで、マスク氏によれば、膨大な量のカメラ画像データを他のコンピューティングシステムの4倍の速さで処理することができるという。Dojoで訓練されたAIソフトウェアは、テスラの顧客に対して無線を通じてアップデートが配信される。
テスラが8月19日に公開したチップは「D1」という名で、7nmの技術を利用している。べンカタラマン氏はこのチップを誇らしげに手に取りながら、GPUレベルの演算機能とCPUとの接続性、そして「現在市販されていて、ゴールドスタンダードとされている最先端のネットワークスイッチチップ」の2倍のI/O帯域幅を持っていると説明した。彼はチップの技術的な説明をしながら、テスラはあらゆるボトルネックを避けるために、使われる技術スタックを可能な限り自分の手で握っていたかったのだと語った。テスラは2020年、Samsung(サムスン)製の次世代コンピューターチップを導入したが、ここ数カ月の間、自動車業界を揺るがしている世界的なチップ不足から、なかなか抜け出せずにいる。この不足を乗り切るために、マスク氏は2021年夏の業績報告会で、代替チップに差し替えた結果、一部の車両ソフトウェアを書き換えざるを得なくなったと語っていた。
供給不足を避けることは脇においても、チップ製造を内製化することの大きな目的は、帯域幅を増やしてレイテンシーを減らし、AIのパフォーマンスを向上させることにあるのだ。
AI Dayでべンカタラマン氏は「計算とデータ転送を同時に行うことができ、私たちのカスタムISA(命令セットアーキテクチャ)は、機械学習のワークロードに完全に最適化されています」と語った。「これは純粋な機械学習マシンなのです」。
べンカタラマン氏はまた、より高い帯域幅を得るために複数のチップを統合した「トレーニングタイル」を公開した。これによって1タイルあたり9ペタフロップスの演算能力、1秒あたり36テラバイトの帯域幅という驚異的な能力が実現されている。これらのトレーニングタイルを組み合わせることで、スーパーコンピューター「Dojo」が構成されている。
AI Dayのイベントに登壇した多くの人が、Dojoはテスラの「Full Self-Driving」(FSD)システムのためだけに使われる技術ではないと口にした(なおFSDは間違いなく高度な運転支援システムではあるものの、まだ完全な自動運転もしくは自律性を実現できるものではない)。この強力なスーパーコンピューターは、シミュレーション・アーキテクチャーなど多面的な構築が行われており、テスラはこれを普遍化して、他の自動車メーカーやハイテク企業にも開放していきたいと考えている。
「これは、テスラ車だけに限定されるものではありません」マスク氏。「FSDベータ版のフルバージョンをご覧になった方は、テスラのニューラルネットが運転を学習する速度をご理解いただけると思います。そして、これはAIの特定アプリケーションの1つですが、この先さらに役立つアプリケーションが出てくると考えています」。
マスク氏は、Dojoの運用開始は2022年を予定しており、その際にはこの技術がどれほど多くの他のユースケースに応用できるかという話ができるだろうと語った。
AI Dayにおいてテスラは、自動運転に対する自社のビジョンベースのアプローチの支持を改めて表明した。これは同社の「Autopilot」(オートパイロット)システムを使って、地球上のどこでも同社の車が走行できることを理想とする、ニューラルネットワークを利用するアプローチだ。テスラのAI責任者であるAndrej Karpathy(アンドレイ・カーパシー)氏は、テスラのアーキテクチャを「動き回り、環境を感知し、見たものに基づいて知的かつ自律的に行動する動物を、ゼロから作り上げるようなものだ」と表現した。
テスラのAI責任者であるアンドレイ・カーパシー氏が、コンピュータビジョンによる半自動運転を実現するために、テスラがどのようにデータを管理しているかを説明している(画像クレジット:Tesla)
「私たちが作っているのは、もちろん体を構成するすべての機械部品、神経系を構成するすべての電気部品、そして目的である自動運転を果たすための頭脳、そしてこの特別な人工視覚野です」と彼はいう。
カーパシー氏は、テスラのニューラルネットワークがこれまでどのように発展してきたかを説明し、いまやクルマの「脳」の中で視覚情報を処理する最初の部分である視覚野が、どのように幅広いニューラルネットワークのアーキテクチャと連動するように設計されていて、情報がよりインテリジェントにシステムに流れ込むようになっているかを示した。
テスラがコンピュータービジョンアーキテクチャーで解決しようとしている2つの主な問題は、一時的な目隠し(交通量の多い交差点で車がAutopilotの視界を遮る場合など)と、早い段階で現れる標識やマーク(100メートル手前に車線が合流するという標識があっても、かつてのコンピューターは実際に合流車線にたどり着くまでそれを覚えておくことができなかったなど)だ。
この問題を解決するために、テスラのエンジニアは、空間反復型ネットワークビデオモジュールを採用した。このモジュールのさまざまな観点が道路のさまざまな観点を追跡し、空間ベースと時間ベースのキューを形成して、道路に関する予測を行う際にAIモデルが参照できるデータのキャッシュを生成する。
同社は1000人を超える手動データラベリングチームを編成したと語り、さらに大規模なラベリングを可能にするために、テスラがどのように特定のクリップを自動ラベリングしているかを具体的に説明した。こうした現実世界の情報をもとに、AIチームは信じられないようなシミュレーションを利用して「Autopilotがプレイヤーとなるビデオゲーム」を生み出す。シミュレーションは、ソースやラベル付けが困難なデータや、閉ループの中にあるデータに対して特に有効だ。
関連記事:テスラが強力なスーパーコンピューターを使ったビジョンオンリーの自動運転アプローチを追求
40分ほど待ったときに、ダブステップの音楽に加えて、テスラのFSDシステムを映したビデオループが流れた、そこには警戒していると思われるドライバーの手が軽くハンドルに触れている様子が映されていた。これは、決して完全に自律的とは言えない先進運転支援システムAutopilotの機能に関する、テスラの主張が精査された後で、ビデオに対して法的要件が課されたものに違いない。米国道路交通安全局(NHTSA)は 今週の初めにテスラが駐車中の緊急車両に衝突する事故が11件発生したことを受け、オートパイロットの予備調査を開始することを発表した。
その数日後、米国民主党の上院議員2名が連邦取引委員会(FTC)に対して、テスラのAutopilot(自動操縦)と「Full Self-Driving」(完全自動運転)機能に関するマーケティングおよび広報活動を調査するよう要請した。
関連記事
・米当局がテスラのオートパイロット機能を調査開始、駐車中の緊急車両との衝突事故受け
・テスラの「完全」自動運転という表現に対し米上院議員がFTCに調査を要請
テスラは、7月にFull Self-Drivingのベータ9版を大々的にリリースし、数千人のドライバーに対して全機能を展開した。だが、テスラがこの機能を車に搭載し続けようとするならば、技術をより高い水準に引き上げる必要がある。そのときにやってきたのが「Tesla AI Day」だった。
「私たちは基本的に、ハードウェアまたはソフトウェアレベルで現実世界のAI問題を解決することに興味がある人に、テスラに参加して欲しい、またはテスラへの参加を検討して欲しいと考えています」とマスク氏は語った。
米国時間8月19日に紹介されたような詳細な技術情報に加えて、電子音楽が鳴り響く中で、Teslaの仲間入りをしたいと思わない血気盛んなAIエンジニアがいるだろうか?
一部始終はこちらから。
画像クレジット:Tesla
【原文】
Elon Musk wants Tesla to be seen as “much more than an electric car company.” On Thursday’s Tesla AI Day, the CEO described Tesla as a company with “deep AI activity in hardware on the inference level and on the training level” that can be used down the line for applications beyond self-driving cars, including a humanoid robot that Tesla is apparently building.
Tesla AI Day, which started after a rousing 45 minutes of industrial music pulled straight from “The Matrix” soundtrack, featured a series of Tesla engineers explaining various Tesla tech with the clear goal of recruiting the best and brightest to join Tesla’s vision and AI team and help the company go to autonomy and beyond.
“There’s a tremendous amount of work to make it work and that’s why we need talented people to join and solve the problem,” said Musk.
Like both “Battery Day” and “Autonomy Day,” the event on Thursday was streamed live on Tesla’s YouTube channel. There was a lot of super technical jargon, but here are the top four highlights of the day.
Tesla Bot: A definitely real humanoid robot
This bit of news was the last update to come out of AI Day before audience questions began, but it’s certainly the most interesting. After the Tesla engineers and executives talked about computer vision, the Dojo supercomputer and the Tesla chip (all of which we’ll get to in a moment), there was a brief interlude where what appeared to be an alien go-go dancer appeared on the stage, dressed in a white body suit with a shiny black mask as a face. Turns out, this wasn’t just a Tesla stunt, but rather an intro to the Tesla Bot, a humanoid robot that Tesla is actually building.
Image Credits: Tesla
When Tesla talks about using its advanced technology in applications outside of cars, we didn’t think he was talking about robot slaves. That’s not an exaggeration. CEO Elon Musk envisions a world in which the human drudgery like grocery shopping, “the work that people least like to do,” can be taken over by humanoid robots like the Tesla Bot. The bot is 5’8″, 125 pounds, can deadlift 150 pounds, walk at 5 miles per hour and has a screen for a head that displays important information.
“It’s intended to be friendly, of course, and navigate a world built for humans,” said Musk. “We’re setting it such that at a mechanical and physical level, you can run away from it and most likely overpower it.”
Because everyone is definitely afraid of getting beat up by a robot that’s truly had enough, right?
The bot, a prototype of which is expected for next year, is being proposed as a non-automotive robotic use case for the company’s work on neural networks and its Dojo advanced supercomputer. Musk did not share whether the Tesla Bot would be able to dance.
Andrej Karpathy, head of AI at Tesla, explaining how Tesla manages data to achieve computer vision-based semi-autonomous driving. Image Credits: Tesla”So we are building of course all of the mechanical components of the body, the nervous system, which has all the electrical components, and for our purposes, the brain of the autopilot, and specifically for this section the synthetic visual cortex,” he said.
Karpathy illustrated how Tesla’s neural networks have developed over time, and how now, the visual cortex of the car, which is essentially the first part of the car’s “brain” that processes visual information, is designed in tandem with the broader neural network architecture so that information flows into the system more intelligently.
The two main problems that Tesla is working on solving with its computer vision architecture are temporary occlusions (like cars at a busy intersection blocking Autopilot’s view of the road beyond) and signs or markings that appear earlier in the road (like if a sign 100 meters back says the lanes will merge, the computer once upon a time had trouble remembering that by the time it made it to the merge lanes).
To solve for this, Tesla engineers fell back on a spatial recurring network video module, wherein different aspects of the module keep track of different aspects of the road and form a space-based and time-based queue, both of which create a cache of data that the model can refer back to when trying to make predictions about the road.
The company flexed its over 1,000-person manual data labeling team and walked the audience through how Tesla auto-labels certain clips, many of which are pulled from Tesla’s fleet on the road, in order to be able to label at scale. With all of this real-world info, the AI team then uses incredible simulation, creating “a video game with Autopilot as the player.” The simulations help particularly with data that’s difficult to source or label, or if it’s in a closed loop.
Background on Tesla’s FSD
At around minute forty in the waiting room, the dubstep music was joined by a video loop showing Tesla’s FSD system with the hand of a seemingly alert driver just grazing the steering wheel, no doubt a legal requirement for the video after investigations into Tesla’s claims about the capabilities of its definitely not autonomous advanced driver assistance system, Autopilot. The National Highway Transportation and Safety Administration earlier this week said they would open a preliminary investigation into Autopilot following 11 incidents in which a Tesla crashed into parked emergency vehicles.
A few days later, two U.S. Democratic senators called on the Federal Trade Commission to investigate Tesla’s marketing and communication claims around Autopilot and the “Full Self-Driving” capabilities.
Tesla released the beta 9 version of Full Self-Driving to much fanfare in July, rolling out the full suite of features to a few thousand drivers. But if Tesla wants to keep this feature in its cars, it’ll need to get its tech up to a higher standard. That’s where Tesla AI Day comes in.
“We basically want to encourage anyone who is interested in solving real-world AI problems at either the hardware or the software level to join Tesla, or consider joining Tesla,” said Musk.
And with technical nuggets as in-depth as the ones featured on Thursday plus a bumping electronic soundtrack, what red-blooded AI engineer wouldn’t be frothing at the mouth to join the Tesla crew?
You can watch the whole thing here:
(文:Rebecca Bellan、Aria Alamalhodaei、翻訳:sako)
空間 - Wikipedia
空間(くうかん、英: space )とは、 (日常の用語)大きさを持った入れ物。 (哲学)時間と共に物質界を成立させる基礎形式。アリストテレスなどに古代ギリシアの思想では、個々の物が占有する場所(トポス)である。 カントは空間を時間とともに人間精神の「直観形式」だとする立場を ...
空間とは - コトバンク
日本大百科全書(ニッポニカ) - 空間の用語解説 - 物が存在しうる場所の全体をいう。哲学における空間空間をめぐる哲学的考察は、哲学の歴史とともに古い。真空の存在、空間と物体との関係、空間的位置の絶対性と関係性、空間そのものの実在性、幾何学と物理的空間との関係など、多くのさまざ...
空間(くうかん)の意味 - goo国語辞書
空間(くうかん)とは。意味や解説、類語。1 物体が存在しないで空いている所。また、あらゆる方向への広がり。「空間を利用する」「宇宙空間」「生活空間」2 哲学で、時間とともにあらゆる事象の根本的な存在形式。それ自体は全方向への無限の延長として表象される。→時間3 数学で、理論で考える前提としての一つの定まった集合。その要素(元)を点とよぶ。普通は三次元のユークリッド空間をいう。4 物理学で、物体が存在し、現象の起こる場所。古典物理学では三... - goo国語辞書は30万4千件語以上を収録。政治・経済・医学・ITなど、最新用語の追加も定期的に行っています。
空間(スキマ)とは何? Weblio辞書
「空間」の意味は 物体が存在しないで空いている所のこと。Weblio国語辞典では「空間」の意味や使い方、用例、類似表現などを解説しています。
空間 (数学) - Wikipedia
空間は幾何学における議論領域(宇宙)である。 空間は単に数学的な構造であって、数学の各分野において生じるものである。 幾何学は経験的実在に対応する。 幾何学的な定理は、単に数学的に真なる命題 …
Weblio和英辞書 - 「空間」の英語・英語例文・英語表現
「空間」は英語でどう表現する?【単語】space...【例文】Einstein's theory of relativity has radically changed our notion of time and space...【その他の表現】room... - 1000万語以上収録!英訳・英文・英単語の使い分けならWeblio英和・和英辞書
Apple Musicの空間オーディオとは何か? やり方や対応曲など7 …
Apple Musicは7500万曲以上の作品が“聴き放題”で楽しめる、アップルの定額制音楽配信サービスです。ミュージックビデオの視聴も可能なほか、インターネットラジオ「Apple Music 1」の番組も充実しています。今回は、そのApple Musicに6月から新しく加わった、ドルビーアトモスに...
空間デザイン事例 | デザイン情報サイト[JDN]
空間デザイン事例. 1/18. 白井屋ホテル. 300年の歴史を持つ旅館を、アートと食文化の発信の場へとリノベーション. 空間デザイン事例. 1/15. トイット Tiny Bakery. 屋根を45度ずらすことで、多用途な半屋外 …
視空間とは - コトバンク
最新 心理学事典 - 視空間の用語解説 - 視覚的に知覚される主観的な空間を視空間とよぶ。その特性は,物理的な空間の特性とさまざまな点で異なっている。【距離と大きさの知覚】 視覚的に知覚された距離を視距離visual distanceとよぶ。視距離と実際の観察距離との対応関係は観察距...
新たな分散型まちづくり「空間自在プロジェクト」JR×KDDI
鉄道のリアルネットワークを提供するJR東日本と通信のバーチャルネットワークを担うKDDIで、新たなプロジェクトが始動します。場所や時間にとらわれない豊かなくらしづくりに向けて、新たな分散型まちづくり「空間自在プロジェクト」の共同事業化を目指します。
59416:
2021-08-23 22:05【お知らせです】 新アカウントの方が Twitterの誤った機械判定でまた凍結されました ①韓国人レイシストが 『日本人は地球上から消え去るべき』とツイート ②僕がそれを引用した上で「日本人は全員○ねと主張するレイシスト」と批判 ③…